Search

Skewed bivariate models and nonparametric estimation for the CTE risk measure

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20090021433</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20090217172807.0</controlfield>
    <controlfield tag="008">090216e20081227esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Skewed bivariate models and nonparametric estimation for the CTE risk measure</subfield>
      <subfield code="c">Catalina Bolance... [et al.]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, it is illustrated the use of the Conditional Tail Expectation (CTE) risk measure on a set of bivariate real data consisting of two types of auto insurance claim costs. Several continuous bivariate distributions (normal, lognormal, skew-normal with the alternative log-skew-normal) are fitted to the data. Besides, a bivariate nonparametric transformed kernel estimation is presented. CTE formulas are given for all these, and numerical results on the real data are discussed and compared</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080597665</subfield>
      <subfield code="a">Métodos estadísticos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20090003736</subfield>
      <subfield code="a">Estimación Kernel</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080603779</subfield>
      <subfield code="a">Seguro de automóviles</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080556495</subfield>
      <subfield code="a">Siniestros</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080345099</subfield>
      <subfield code="a">Bolancé Losilla, Catalina</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">27/12/2008 Tomo 43 Número 3  - 2008, p. 386-393</subfield>
    </datafield>
  </record>
</collection>