Search

The Solvency II square-root formula fooor systematic biometric risk

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20120013193</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20120508132641.0</controlfield>
    <controlfield tag="008">120402e20120301esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20100056639</subfield>
      <subfield code="a">Christiansen, M.C.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="4">
      <subfield code="a">The Solvency II square-root formula fooor systematic biometric risk</subfield>
      <subfield code="c">M.C. Christiansen, M.M. Denuit, D. Lazar</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, we develop a model supporting the so-called square-root formula used in Solvency II to aggregate the modular life SCR. Describing the insurance policy by a Markov jump process, we can obtain expressions similar to the square-root formula in Solvency II by means of limited expansions around the best estimate. Numerical illustrations are given, based on German population data. Even if the square-root formula can be supported by theoretical considerations, it is shown that the QIS correlation matrix is highly questionable.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080564254</subfield>
      <subfield code="a">Solvencia II</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080570590</subfield>
      <subfield code="a">Seguro de vida</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20100016923</subfield>
      <subfield code="a">Riesgo sistémico</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080614300</subfield>
      <subfield code="a">Indicadores de solvencia</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080576783</subfield>
      <subfield code="a">Modelo de Markov</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20100059982</subfield>
      <subfield code="a">Análisis biométrico</subfield>
    </datafield>
    <datafield tag="651" ind1=" " ind2="1">
      <subfield code="0">MAPA20080637996</subfield>
      <subfield code="a">Alemania</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20110021498</subfield>
      <subfield code="a">Denuit, M.M.</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20120013605</subfield>
      <subfield code="a">Lazar, Dorina</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">01/03/2012 Tomo 50 Número 2  - 2012 , p. 257-265</subfield>
    </datafield>
  </record>
</collection>