Search

Bayesian modelling of the time delay between diagnosis and settlement for critical illness insurance using a Burr generalised-linear-type model

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Bayesian modelling of the time delay between diagnosis and settlement for critical illness insurance using a Burr generalised-linear-type model</title>
</titleInfo>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2012</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">We discuss Bayesian modelling of the delay between dates of diagnosis and settlement of claims in Critical Illness Insurance using a Burr distribution. The data are supplied by the UK Continuous Mortality Investigation and relate to claims settled in the years 1999-2005. There are non-recorded dates of diagnosis and settlement and these are included in the analysis as missing values using their posterior predictive distribution and MCMC methodology. The possible factors affecting the delay (age, sex, smoker status, policy type, benefit amount, etc.) are investigated under a Bayesian approach. A 3-parameter Burr generalised-linear-type model is fitted, where the covariates are linked to the mean of the distribution. Variable selection using Bayesian methodology to obtain the best model with different prior distribution setups for the parameters is also applied. In particular, Gibbs variable selection methods are considered, and results are confirmed using exact marginal likelihood findings and related Laplace approximations. For comparison purposes, a lognormal model is also considered. </abstract>
<note type="statement of responsibility">Erengul Ozkok..[et..al]</note>
<subject authority="lcshac" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080592011">
<topic>Modelos actuariales</topic>
</subject>
<subject authority="lcshac" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080550462">
<topic>Diagnosis</topic>
</subject>
<subject authority="lcshac" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080624941">
<topic>Seguro de enfermedades graves</topic>
</subject>
<subject authority="lcshac" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20100065242">
<topic>Teorema de Bayes</topic>
</subject>
<subject authority="lcshac" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080618902">
<topic>Análisis de multivariables</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>Insurance : mathematics and economics</title>
</titleInfo>
<originInfo>
<publisher>Oxford : Elsevier, 1990-</publisher>
</originInfo>
<identifier type="issn">0167-6687</identifier>
<identifier type="local">MAP20077100574</identifier>
<part>
<text>01/03/2012 Tomo 50 Número 2  - 2012 , p. 266-279</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">120507</recordCreationDate>
<recordChangeDate encoding="iso8601">20120509111918.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20120020252</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>