Search

Impact of counterparty risk on the reinsurance market

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20120025844</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20120606121105.0</controlfield>
    <controlfield tag="008">120531e20120301esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">5</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20090034792</subfield>
      <subfield code="a">Bernard, Carole</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Impact of counterparty risk on the reinsurance market</subfield>
      <subfield code="c">Carole Bernard, Mike Ludkovski</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We investigate the impact of counterparty risk (from the insurers viewpoint) on contract design in the reinsurance market. We study a multiplicative default risk model with partial recovery and where the probability of the reinsurers default depends on the loss incurred by the insurer. The reinsurer (reinsurance seller) is assumed to be risk-neutral, while the insurer (reinsurance buyer) is risk-averse and uses either expected utility or a conditional tail expectation risk criterion. We show that generally the reinsurance buyer wishes to overinsure above a deductible level, and that many of the standard comparative statics cease to hold. We also derive the properties of stop-loss insurance in our model and consider the possibility of divergent beliefs about the default probability. Classical results are recovered when default risk is loss-independent or there is zero recovery rate. Results are illustrated with numerical examples. </subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080552367</subfield>
      <subfield code="a">Reaseguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080602529</subfield>
      <subfield code="a">Mercado de reaseguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080605957</subfield>
      <subfield code="a">Empresas de reaseguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080545260</subfield>
      <subfield code="a">Riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080582401</subfield>
      <subfield code="a">Riesgo crediticio</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20090011281</subfield>
      <subfield code="a">Ludkovski, Michael</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">01/03/2012 Tomo 16 Número 1  - 2012 , p. 87-111</subfield>
    </datafield>
  </record>
</collection>