Estimating copulas for insurance from scarce observations, expert opinion and prior information : a bayesian approach
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Estimating copulas for insurance from scarce observations, expert opinion and prior information</title>
<subTitle>: a bayesian approach</subTitle>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20120018112">
<namePart>Arbenz, Philipp</namePart>
<nameIdentifier>MAPA20120018112</nameIdentifier>
</name>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20120018624">
<namePart>Canestraro, Davide</namePart>
<nameIdentifier>MAPA20120018624</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2012</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">A prudent assessment of dependence is crucial in many stochastic models for insurance risks. Copulas have become popular to model such dependencies. However, estimation procedures for copulas often lead to large parameter uncertainty when observations are scarce. In this paper, we propose a Bayesian method which combines prior information (e.g. from regulators), observations and expert opinion in order to estimate copula parameters and determine the estimation uncertainty. The combination of different sources of information can significantly reduce the parameter uncertainty compared to the use of only one source. The model can also account for uncertainty in the marginal distributions. Furthermore, we describe the methodology for obtaining expert opinion and explain involved psychological effects and popular fallacies. We exemplify the approach in a case study.</abstract>
<note type="statement of responsibility">Philipp Arbenz, Davide Canestraro</note>
<subject authority="lcshac" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20090035034">
<topic>Modelización mediante cópulas</topic>
</subject>
<subject authority="lcshac" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080591182">
<topic>Gerencia de riesgos</topic>
</subject>
<subject authority="lcshac" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080586348">
<topic>Métodos de cálculo</topic>
</subject>
<subject authority="lcshac" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080586447">
<topic>Modelo estocástico</topic>
</subject>
<subject authority="lcshac" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080625894">
<topic>Métodos de estimación objetiva</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>Astin bulletin</title>
</titleInfo>
<originInfo>
<publisher>Belgium : ASTIN and AFIR Sections of the International Actuarial Association</publisher>
</originInfo>
<identifier type="issn">0515-0361</identifier>
<identifier type="local">MAP20077000420</identifier>
<part>
<text>07/05/2012 Volumen 42 Número 1 - mayo 2012 , p. 271-290</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">120704</recordCreationDate>
<recordChangeDate encoding="iso8601">20120711152431.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20120031050</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>