Search

Lifetime dependence modelling using a truncated multivariate gamma distribution

MARC record
Tag12Value
LDR  00000cab a2200000 4500
001  MAP20130024530
003  MAP
005  20130829115151.0
008  130731e20130506esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
100  ‎$0‎MAPA20110007942‎$a‎Alai, Daniel H.
24510‎$a‎Lifetime dependence modelling using a truncated multivariate gamma distribution‎$c‎Daniel H. Alai, Zinoviy Landsman, Michael Sherris
520  ‎$a‎Systematic improvements in mortality increases dependence in the survival distributions of insured lives, which is not accounted for in standard life tables and actuarial models used for annuity pricing and reserving. Systematic longevity risk also undermines the law of large numbers, a law that is relied on in the risk management of life insurance and annuity portfolios. This paper applies a multivariate gamma distribution to incorporate dependence. Lifetimes are modelled using a truncated multivariate gamma distribution that induces dependence through a shared gamma distributed component. Model parameter estimation is developed based on the method of moments and generalized to allow for truncated observations. The impact of dependence within a portfolio, or cohort, of lives with similar risk characteristics is demonstrated by applying the model to annuity valuation. Dependence is shown to have a significant impact on the risk of the annuity portfolio as compared with traditional actuarial methods that implicitly assume independent lifetimes
7730 ‎$w‎MAP20077100574‎$t‎Insurance : mathematics and economics‎$d‎Oxford : Elsevier, 1990-‎$x‎0167-6687‎$g‎06/05/2013 Volumen 52 Número 3 - mayo 2013
856  ‎$y‎MÁS INFORMACIÓN‎$u‎mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A