Search

Reducing risk by merging counter-monotonic risks

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20140006724</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20140327100545.0</controlfield>
    <controlfield tag="008">140220e20140113esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Reducing risk by merging counter-monotonic risks</subfield>
      <subfield code="c">Ka Chun Cheung...[et.al]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this article, we show that some important implications concerning comonotonic couples and corresponding convex order relations for their sums cannot be translated to counter-monotonicity in general. In a financial context, it amounts to saying that merging counter-monotonic positions does not necessarily reduce the overall level of risk. We propose a simple necessary and sufficient condition for such a merge to be effective. Natural interpretations and various characterizations of this condition are given. As applications, we develop cancelation laws for convex order and identify desirable structural properties of insurance indemnities that make an insurance contract universally marketable, in the sense that it is appealing to both the policyholder and the insurer.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080604394</subfield>
      <subfield code="a">Valoración de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080598631</subfield>
      <subfield code="a">Reducción de riesgos</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080650322</subfield>
      <subfield code="a">Chun Cheung, Ka</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">13/01/2014 Volumen 54 Número 1 - enero 2014 , p. 58-65</subfield>
    </datafield>
  </record>
</collection>