Search

Optimal reinsurance and investment with unobservable claim size and intensity

Recurso electrónico / electronic resource
MARC record
Tag12Value
LDR  00000cab a2200000 4500
001  MAP20140017829
003  MAP
005  20140530111859.0
008  140522e20140303esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
100  ‎$0‎MAPA20120013513‎$a‎Liang, Zhibin
24510‎$a‎Optimal reinsurance and investment with unobservable claim size and intensity‎$c‎Zhibin Liang, Erhan Bayraktar
520  ‎$a‎We consider the optimal reinsurance and investment problem in an unobservable Markov-modulated compound Poisson risk model, where the intensity and jump size distribution are not known but have to be inferred from the observations of claim arrivals. Using a recently developed result from filtering theory, we reduce the partially observable control problem to an equivalent problem with complete observations. Then using stochastic control theory, we get the closed form expressions of the optimal strategies which maximize the expected exponential utility of terminal wealth. In particular, we investigate the effect of the safety loading and the unobservable factors on the optimal reinsurance strategies. With the help of a generalized Hamilton-Jacobi-Bellman equation where the derivative is replaced by Clarke's generalized gradient as in Bäuerle and Rieder (2007), we characterize the value function, which helps us verify that the strategies we constructed are optimal
650 4‎$0‎MAPA20080576783‎$a‎Modelo de Markov
650 4‎$0‎MAPA20080567118‎$a‎Reclamaciones
650 4‎$0‎MAPA20080552367‎$a‎Reaseguro
650 4‎$0‎MAPA20080602437‎$a‎Matemática del seguro
650 4‎$0‎MAPA20080589875‎$a‎Control estocástico
700  ‎$0‎MAPA20090000537‎$a‎Bayraktar, Erhan
7730 ‎$w‎MAP20077100574‎$t‎Insurance : mathematics and economics‎$d‎Oxford : Elsevier, 1990-‎$x‎0167-6687‎$g‎03/03/2014 Volumen 55 Número 1 - marzo 2014 , p. 156-166