Search

Optimal reinsurance and investment with unobservable claim size and intensity

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20140017829</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20140530111859.0</controlfield>
    <controlfield tag="008">140522e20140303esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20120013513</subfield>
      <subfield code="a">Liang, Zhibin</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Optimal reinsurance and investment with unobservable claim size and intensity</subfield>
      <subfield code="c">Zhibin Liang, Erhan Bayraktar</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We consider the optimal reinsurance and investment problem in an unobservable Markov-modulated compound Poisson risk model, where the intensity and jump size distribution are not known but have to be inferred from the observations of claim arrivals. Using a recently developed result from filtering theory, we reduce the partially observable control problem to an equivalent problem with complete observations. Then using stochastic control theory, we get the closed form expressions of the optimal strategies which maximize the expected exponential utility of terminal wealth. In particular, we investigate the effect of the safety loading and the unobservable factors on the optimal reinsurance strategies. With the help of a generalized Hamilton-Jacobi-Bellman equation where the derivative is replaced by Clarke's generalized gradient as in Bäuerle and Rieder (2007), we characterize the value function, which helps us verify that the strategies we constructed are optimal</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080576783</subfield>
      <subfield code="a">Modelo de Markov</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080567118</subfield>
      <subfield code="a">Reclamaciones</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080552367</subfield>
      <subfield code="a">Reaseguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080589875</subfield>
      <subfield code="a">Control estocástico</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20090000537</subfield>
      <subfield code="a">Bayraktar, Erhan</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">03/03/2014 Volumen 55 Número 1 - marzo 2014 , p. 156-166</subfield>
    </datafield>
  </record>
</collection>