Time-consistent meanvariance hedging of longevity risk : Effect of cointegration
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20140023783</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20140731112949.0</controlfield>
<controlfield tag="008">140704e20140505esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20140011308</subfield>
<subfield code="a">Wing Wong, Tat</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Time-consistent meanvariance hedging of longevity risk</subfield>
<subfield code="b">: Effect of cointegration</subfield>
<subfield code="c">Tat Wing Wong, Mei Choi Chiu, Hoi Ying Wong</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">This paper investigates the time-consistent dynamic meanvariance hedging of longevity risk with a longevity security contingent on a mortality index or the national mortality. Using an HJB framework, we solve the hedging problem in which insurance liabilities follow a doubly stochastic Poisson process with an intensity rate that is correlated and cointegrated to the index mortality rate. The derived closed-form optimal hedging policy articulates the important role of cointegration in longevity hedging. We show numerically that a time-consistent hedging policy is a smoother function in time when compared with its time-inconsistent counterpart.
</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586447</subfield>
<subfield code="a">Modelo estocástico</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080591182</subfield>
<subfield code="a">Gerencia de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555016</subfield>
<subfield code="a">Longevidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555306</subfield>
<subfield code="a">Mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20140013043</subfield>
<subfield code="a">Cointegración</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080571566</subfield>
<subfield code="a">Casos prácticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20130000848</subfield>
<subfield code="a">Choi Chiu, Mei</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">MAPA20090029910</subfield>
<subfield code="a">Ying Wong, Hoi</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100574</subfield>
<subfield code="t">Insurance : mathematics and economics</subfield>
<subfield code="d">Oxford : Elsevier, 1990-</subfield>
<subfield code="x">0167-6687</subfield>
<subfield code="g">05/05/2014 Volumen 56 Número 1 - mayo 2014 , p. 56-67</subfield>
</datafield>
</record>
</collection>