Search

Power outage estimation for tropical cyclones : improved accuracy with simpler models

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20140028030</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20140730150811.0</controlfield>
    <controlfield tag="008">140730e20140602esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20110032883</subfield>
      <subfield code="a">Nateghi, Roshanak</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Power outage estimation for tropical cyclones</subfield>
      <subfield code="b">: improved accuracy with simpler models</subfield>
      <subfield code="c">Roshanak Nateghi, Seth Guikema, Steven M. Quiring</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this article, we discuss an outage-forecasting model that we have developed. This model uses very few input variables to estimate hurricane-induced outages prior to landfall with great predictive accuracy. We also show the results for a series of simpler models that use only publicly available data and can still estimate outages with reasonable accuracy. The intended users of these models are emergency response planners within power utilities and related government agencies. We developed our models based on the method of random forest, using data from a power distribution system serving two states in the Gulf Coast region of the United States. We also show that estimates of system reliability based on wind speed alone are not sufficient for adequately capturing the reliability of system components. We demonstrate that a multivariate approach can produce more accurate power outage predictions.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000345</subfield>
      <subfield code="t">Risk analysis : an international journal</subfield>
      <subfield code="d">McLean, Virginia : Society for Risk Analysis, 1987-2015</subfield>
      <subfield code="x">0272-4332</subfield>
      <subfield code="g">02/06/2014 Volumen 34 Número 6 - junio 2014 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>