Risk aggregation and stochastic claims reserving in disability insurance
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20150002266</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20150128165148.0</controlfield>
<controlfield tag="008">150113e20141103esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20150002778</subfield>
<subfield code="a">Djehiche, Boualem</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Risk aggregation and stochastic claims reserving in disability insurance</subfield>
<subfield code="c">Boualem Djehiche, Björn Löfdahl</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">We consider a large, homogeneous portfolio of life or disability annuity policies. The policies are assumed to be independent conditional on an external stochastic process representing the economicdemographic environment. Using a conditional law of large numbers, we establish the connection between claims reserving and risk aggregation for large portfolios. Further, we derive a partial differential equation for moments of present values. Moreover, we show how statistical multi-factor intensity models can be approximated by one-factor models, which allows for solving the PDEs very efficiently. Finally, we give a numerical example where moments of present values of disability annuities are computed using finite-difference methods and Monte Carlo simulations.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080593407</subfield>
<subfield code="a">Seguro de invalidez</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080603120</subfield>
<subfield code="a">Procesos estocásticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080608606</subfield>
<subfield code="a">Simulación Monte Carlo</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080632151</subfield>
<subfield code="a">Técnicas estadísticas multivariantes</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20150005106</subfield>
<subfield code="a">Löfdahl, Björn</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100574</subfield>
<subfield code="t">Insurance : mathematics and economics</subfield>
<subfield code="d">Oxford : Elsevier, 1990-</subfield>
<subfield code="x">0167-6687</subfield>
<subfield code="g">03/11/2014 Volumen 59 Número 1 - noviembre 2014 , p. 100-108</subfield>
</datafield>
</record>
</collection>