Search

Extreme value analysis of the Haezendonck-Goovaerts risk measure with a general Young function

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20150002457</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20150122171256.0</controlfield>
    <controlfield tag="008">150113e20141103esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080650421</subfield>
      <subfield code="a">Tang, Qihe</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Extreme value analysis of the Haezendonck-Goovaerts risk measure with a general Young function</subfield>
      <subfield code="c">Qihe Tang, Fan Yang</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">For a risk variable X and a normalized Young function f(·), the HaezendonckGoovaerts risk measure for X at level q?(0,1) is defined as Hq[X]=infx?R(x+h), where h solves the equation View the MathML source if Pr(X>x)>0 or is 0 otherwise. In a recent work, we implemented an asymptotic analysis for Hq[X] with a power Young function for the Fréchet, Weibull and Gumbel cases separately. A key point of the implementation was that h can be explicitly solved for fixed x and q, which gave rise to the possibility to express Hq[X] in terms of x and q. For a general Young function, however, this does not work anymore and the problem becomes a lot harder. In the present paper, we extend the asymptotic analysis for Hq[X] to the case with a general Young function and we establish a unified approach for the three extreme value cases. In doing so, we overcome several technical difficulties mainly due to the intricate relationship between the working variables x, h and q.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">03/11/2014 Volumen 59 Número 1 - noviembre 2014 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>