Search

Personal finance and life insurance under separation of risk aversion and elasticity of substitution

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20150023643</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20150707153714.0</controlfield>
    <controlfield tag="008">150626e20150504esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20150012814</subfield>
      <subfield code="a">Jensen, N.R.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Personal finance and life insurance under separation of risk aversion and elasticity of substitution</subfield>
      <subfield code="c">N.R. Jensen, M. Steffensen</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In a classical BlackScholes market, we establish a connection between two seemingly different approaches to continuous-time utility optimization. We study the optimal consumption, investment, and life insurance decision of an investor with power utility and an uncertain lifetime. To separate risk aversion from elasticity of inter-temporal substitution, we introduce certainty equivalents. We propose a time-inconsistent global optimization problem, and we present a verification theorem for an equilibrium control. In the special case without mortality risk, we discover that our optimization approach is equivalent to recursive utility optimization with EpsteinZin preferences in the sense that the two approaches lead to the same result. We find this interesting since our optimization problem has an intuitive interpretation as a global maximization of certainty equivalents and since recursive utility, in contrast to our approach, gives rise to severe differentiability problems. Also, our optimization approach can there be seen as a generalization of recursive utility optimization with EpsteinZin preferences to include mortality risk and life insurance.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">04/05/2015 Volumen 62 - mayo 2015 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>