Search

On a partial integrodifferential equation of Seal¿s type

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<rdf:Description>
<dc:creator>Willmot, Gordon E.</dc:creator>
<dc:date>2015-05-04</dc:date>
<dc:description xml:lang="es">Sumario: In this paper we generalize a partial integrodifferential equation satisfied by the finite time ruin probability in the classical Poisson risk model. The generalization also includes the bivariate distribution function of the time of and the deficit at ruin. We solve the partial integrodifferential equation by Laplace transforms with the help of Lagrange¿s implicit function theorem. The assumption of mixed Erlang claim sizes is then shown to result in tractable computational formulas for the finite time ruin probability as well as the bivariate distribution function of the time of and the deficit at ruin. A more general partial integrodifferential equation is then briefly considered.</dc:description>
<dc:identifier>https://documentacion.fundacionmapfre.org/documentacion/publico/es/bib/152948.do</dc:identifier>
<dc:language>spa</dc:language>
<dc:rights xml:lang="es">InC - http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:type xml:lang="es">Artículos y capítulos</dc:type>
<dc:title xml:lang="es">On a partial integrodifferential equation of Seal¿s type</dc:title>
<dc:relation xml:lang="es">En: Insurance : mathematics and economics. - Oxford : Elsevier, 1990- = ISSN 0167-6687. - 04/05/2015 Volumen 62 - mayo 2015 </dc:relation>
</rdf:Description>
</rdf:RDF>