Optimal investment-reinsurance strategy for mean-variance insurers with square-root factor process
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20150023728</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20150707153723.0</controlfield>
<controlfield tag="008">150626e20150504esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20130002439</subfield>
<subfield code="a">Shen, Yang</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Optimal investment-reinsurance strategy for mean-variance insurers with square-root factor process</subfield>
<subfield code="c">Yang Shen, Yan Zeng</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">This paper studies an optimal investmentreinsurance problem for an insurer with a surplus process represented by the CramérLundberg model. The insurer is assumed to be a meanvariance optimizer. The financial market consists of one risk-free asset and one risky asset. The market price of risk depends on a Markovian, affine-form, square-root stochastic factor process, while the volatility and appreciation rate of the risky asset are given by non-Markovian, unbounded processes. The insurer faces the decision-making problem of choosing to purchase reinsurance, acquire new business and invest its surplus in the financial market such that the mean and variance of its terminal wealth is maximized and minimized simultaneously. We adopt a backward stochastic differential equation approach to solve the problem. Closed-form expressions for the efficient frontier and efficient strategy of the meanvariance problem are derived. Numerical examples are presented to illustrate our results in two special cases, the constant elasticity of variance model and Heston¿s model.</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100574</subfield>
<subfield code="t">Insurance : mathematics and economics</subfield>
<subfield code="d">Oxford : Elsevier, 1990-</subfield>
<subfield code="x">0167-6687</subfield>
<subfield code="g">04/05/2015 Volumen 62 - mayo 2015 </subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="y">MÁS INFORMACIÓN</subfield>
<subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
</datafield>
</record>
</collection>