Dispersion estimates for poisson and tweedie models
Contenido multimedia no disponible por derechos de autor o por acceso restringido. Contacte con la institución para más información.
Tag | 1 | 2 | Value |
---|---|---|---|
LDR | 00000cab a2200000 4500 | ||
001 | MAP20150027016 | ||
003 | MAP | ||
005 | 20150911144811.0 | ||
008 | 150805e20100503esp|||p |0|||b|spa d | ||
040 | $aMAP$bspa$dMAP | ||
084 | $a6 | ||
100 | 1 | $0MAPA20120018136$aRosenlund, Stig | |
245 | 1 | 0 | $aDispersion estimates for poisson and tweedie models$cStig Rosenlund |
520 | $aAs a consequence of pointing out an ambiguity in Renshaw (1994), we show that the Overdispersed Poisson model cannot be generated by random independent intensities. Hence Pearson's chi-square-based estimate is normally unsuitable for GLM (Generalized Linear Model) log link claim frequency analysis in insurance. We propose a new dispersion parameter estimate in the GLM Tweedie model for risk premium. This is better than the Pearson estimate, if there are sufficiently many claims in each tariff cell. Simulation results are given showing the differences between it and the Pearson estimate. | ||
773 | 0 | $wMAP20077000420$tAstin bulletin$dBelgium : ASTIN and AFIR Sections of the International Actuarial Association$x0515-0361$g03/05/2010 Volumen 40 Número 1 - mayo 2010 , p. 271-279 |