Search

Matrix-Form recursions for a family of compound distributions

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20150027054</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20150911144845.0</controlfield>
    <controlfield tag="008">150805e20100503esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20150014030</subfield>
      <subfield code="a">Wu, Xueyuan</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Matrix-Form recursions for a family of compound distributions</subfield>
      <subfield code="c">Xueyuan Wu, Shuanming Li</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, we aim to evaluate the distribution of the aggregate claims in the collective risk model. The claim count distribution is firstly assumed to belong to a generalised (a, b, 0) family. A matrix form recursive formula is then derived to evaluate the related compound distribution when individual claim amounts follow a discrete distribution on non-negative integers. The corresponding formula is also given for continuous individual claim amounts. Secondly, we pay particular attention to the recursive formula for compound phase-type distributions, since only certain types of discrete phase-type distributions belong to the generalised (a, b, 0) family. Similar recursive formulae are obtained for discrete and continuous individual claim amount distributions. Finally, numerical examples are presented for three counting distributions.
</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">03/05/2010 Volumen 40 Número 1 - mayo 2010 , p. 351-368</subfield>
    </datafield>
  </record>
</collection>