Chain ladder and error propagation
Contenido multimedia no disponible por derechos de autor o por acceso restringido. Contacte con la institución para más información.
Tag | 1 | 2 | Value |
---|---|---|---|
LDR | 00000cab a2200000 4500 | ||
001 | MAP20160024173 | ||
003 | MAP | ||
005 | 20160809145750.0 | ||
008 | 160808e20160502usa|||p |0|||b|eng d | ||
040 | $aMAP$bspa$dMAP | ||
084 | $a6 | ||
100 | 1 | $0MAPA20160009835$aRöhr, Ancus | |
245 | 1 | 0 | $aChain ladder and error propagation$cAncus Röhr |
520 | $aThis article shows how estimators for the chain ladder prediction error in Mack's (1993) distribution-free stochastic model can be derived using the error propagation formula. This method allows for the treatment of the general case of the prediction error of the loss development result between two arbitrary future horizons. In the well-known special cases considered previously by Mack (1993) and Merz and Wüthrich (2008). However, the algebraic form in which this article casts them is new, considerably more compact and more intuitive to understand. The error propagation method also provides a natural split into process error and parameter error. The proofs identify and exploit symmetries of chain ladder processes in a novel way. For the sake of wider practical applicability of the formulae derived, it is allows for incomplete historical data and the exclusion of outliers in the triangles | ||
773 | 0 | $wMAP20077000420$tAstin bulletin$dBelgium : ASTIN and AFIR Sections of the International Actuarial Association$x0515-0361$g02/05/2016 Volumen 46 Número 2 - mayo 2016 , p. 293-330 |