The Theory of optimal stochastic control as applied to insurance underwriting cycles
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20170004684</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20170214105226.0</controlfield>
<controlfield tag="008">170214e20161230usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20080648558</subfield>
<subfield code="a">Eckles, David L.</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="4">
<subfield code="a">The Theory of optimal stochastic control as applied to insurance underwriting cycles</subfield>
<subfield code="c">David L. Eckles, David G. McCarthy, Xudong Zeng</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">We use the theories of optimal stochastic control and engineering process control to analyze the well-known phenomenon of insurance underwriting cycles in continuous time. We show in a continuous time framework that underwriting cycles can be explained with a model where premiums are set rationally, but where there are various reporting and regulatory lags. We find that the observed cycle length depends on the length of these underlying lags. Our result can be seen as consistent with previous empirical work showing underwriting cycles varying across countries and lines of insurance. In the event that no lags exist, our result is also consistent with more recent literature suggesting that insurance cycles may not exist.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080598532</subfield>
<subfield code="a">Provisiones técnicas</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586447</subfield>
<subfield code="a">Modelo estocástico</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080626617</subfield>
<subfield code="a">Cálculo de provisiones técnicas</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20170002031</subfield>
<subfield code="a">McCarthy, David G.</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20140000111</subfield>
<subfield code="a">Zeng, Xudong</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">30/12/2016 Tomo 20 Número 4 - 2016 , p. 327-340</subfield>
</datafield>
</record>
</collection>