Search

A Multivariate analysis of intercompany loss triangles

Recurso electrónico / Electronic resource
MARC record
Tag12Value
LDR  00000cab a2200000 4500
001  MAP20170019589
003  MAP
005  20170621144823.0
008  170613e20170605esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
100  ‎$0‎MAPA20100048726‎$a‎Shi, Peng
24512‎$a‎A Multivariate analysis of intercompany loss triangles‎$c‎Peng Shi
520  ‎$a‎The prediction of insurance liabilities often requires aggregating experience of loss payment from multiple insurers. The resulting data set of intercompany loss triangles displays a multilevel structure of claim development where a portfolio consists of a group of insurers, each insurer several lines of business, and each line various cohorts of claims. In this article, we propose a Bayesian hierarchical model to analyze intercompany claim triangles. A copula regression is employed to join multiple triangles of each insurer, and a hierarchical structure is specified on major parameters to allow for information pooling across insurers. Numerical analysis is performed for an insurance portfolio of multivariate loss triangles from the National Association of Insurance Commissioners. We show that prediction is improved through borrowing strength within and between insurers based on training and holdout observations.
650 4‎$0‎MAPA20080618902‎$a‎Análisis de multivariables
650 4‎$0‎MAPA20080589837‎$a‎Control de pérdidas
650 4‎$0‎MAPA20080592059‎$a‎Modelos predictivos
650 4‎$0‎MAPA20080579258‎$a‎Cálculo actuarial
7730 ‎$w‎MAP20077000727‎$t‎The Journal of risk and insurance‎$d‎Nueva York : The American Risk and Insurance Association, 1964-‎$x‎0022-4367‎$g‎05/06/2017 Volumen 84 Número 2 - junio 2017 , p. 717-737