Semicoherent multipopulation mortality modeling : the impact on longevity risk securitizacion
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20170028833</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20170912154006.0</controlfield>
<controlfield tag="008">170904e20170904usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">7</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20100040126</subfield>
<subfield code="a">Siu-Hang Li, Johnny</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Semicoherent multipopulation mortality modeling</subfield>
<subfield code="b">: the impact on longevity risk securitizacion</subfield>
<subfield code="c">Johnny Siu-Hang Li, Wai-Sum Chan, Rui Zhou</subfield>
</datafield>
<datafield tag="300" ind1=" " ind2=" ">
<subfield code="a">41 p.</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Multipopulation mortality models play an important role in longevity risk transfers involving more than one population. Most of the existing multipopulation mortality models are built on the hypothesis of coherence, which assumes that there always exists a force that brings the mortality differential between any two populations back to a constant long-term equilibrium level. This hypothesis prevents diverging long-term forecasts, which do not seem to be biologically reasonable. However, the coherence assumption may be perceived by market participants as too strong and is in fact not always supported by empirical observations. In this article, we introduce a new concept called "semicoherence", which is less stringent in the sense that it permits the mortality trajectories of two related populations to diverge, as long as the divergence does not exceed a specific tolerance corridor, beyond which mean reversion will come into effect. We further propose to produce semicoherent mortality forecasts by using a vector threshold autoregression. The proposed modeling approach is illustrated with mortality data form U.S. and English and Welsh male populations, and is applied to several pricing and hedging scenarios.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555306</subfield>
<subfield code="a">Mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080564407</subfield>
<subfield code="a">Titulización</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555016</subfield>
<subfield code="a">Longevidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080547646</subfield>
<subfield code="a">Impactos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080615673</subfield>
<subfield code="a">Transferencia de riesgos</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20110016883</subfield>
<subfield code="a">Chan, Wai-Sum</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">MAPA20110028855</subfield>
<subfield code="a">Zhou, Rui</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000727</subfield>
<subfield code="t">The Journal of risk and insurance</subfield>
<subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
<subfield code="x">0022-4367</subfield>
<subfield code="g">04/09/2017 Volumen 84 Número 3 - septiembre 2017 , p. 1025-1065</subfield>
</datafield>
</record>
</collection>