Search

Beyond the pearson correlation : heavy-tailed risks, weighted gini correlations, and a gini-type weighted insurance pricing model

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Beyond the pearson correlation</title>
<subTitle>: heavy-tailed risks, weighted gini correlations, and a gini-type weighted insurance pricing model</subTitle>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20170012085">
<namePart>Zitikis, Ricardas</namePart>
<nameIdentifier>MAPA20170012085</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">bel</placeTerm>
</place>
<dateIssued encoding="marc">2017</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
<extent>24 p.</extent>
</physicalDescription>
<abstract displayLabel="Summary">Gini-type correlation coefficients have become increasingly important in a variety of research areas, including economics, insurance and finance, where modellingwith heavy-tailed distributions is of pivotal importance. In such situations, naturally, the classical Pearson correlation coefficient is of little use. On the other hand, it has been observed that when light-tailed situations are of interest, and hence when both the Gini-type and Pearson correlation coefficients are well defined and finite, these coefficients are related and sometimes even coincide. In general, understanding how these correlation coefficients are related has been an illusive task. In this paper, we put forward arguments that establish such a connection via certain regression-type equations. This, in turn, allows us to introduce a Gini-type weighted insurance pricing model that works in heavytailed situations and thus provides a natural alternative to the classical capital asset pricing model. We illustrate our theoretical considerations using several bivariate distributions, such as elliptical and those with heavy-tailed Pareto margins.</abstract>
<note type="statement of responsibility">Edward Furman, Ricardas Zitikis</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080554125">
<topic>Ecuaciones</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080589004">
<topic>Análisis matemático</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080564322">
<topic>Tarificación</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080621285">
<topic>Distribuciones estadísticas</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>Astin bulletin</title>
</titleInfo>
<originInfo>
<publisher>Belgium : ASTIN and AFIR Sections of the International Actuarial Association</publisher>
</originInfo>
<identifier type="issn">0515-0361</identifier>
<identifier type="local">MAP20077000420</identifier>
<part>
<text>01/09/2017 Volumen 47 Número 3 - septiembre 2017 , p. 919-942</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">170920</recordCreationDate>
<recordChangeDate encoding="iso8601">20170920172032.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20170030546</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>