Search

Pricing surrender risk in Ratchet equity-index annuities under regime-switching Lévy processes

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170035077</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20171122122211.0</controlfield>
    <controlfield tag="008">171031e20170904esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20170014492</subfield>
      <subfield code="a">Kolkiewicz, Adam W.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Pricing surrender risk in Ratchet equity-index annuities under regime-switching Lévy processes</subfield>
      <subfield code="c">Adam W. Kolkiewicz, Fangyuan Sally Lin</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This article presents a numerical method of pricing the surrender risk in Ratchet equity-index annuities (EIAs). We assume that log-returns of the underlying fund belong to a class of regime-switching models where the parameters are allowed to change randomly according to a hidden Markov chain. The defining feature of these models is the fact that in each regime the characteristic function of log-returns is assumed to have an analytical form. The presented method provides an unified pricing framework within this class and includes the recently developed COS method as a particular case. This aspect of the method is particularly useful when pricing Ratchet options embedded in EIAs, for which the COS method exhibits a low rate of convergence. Our numerical results confirm that for models considered in this article the proposed approach improves convergence of the COS method without increasing the computational burden.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20170014782</subfield>
      <subfield code="a">Sally Lin, Fangyuan</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">04/09/2017 Tomo 21 Número 3 - 2017 , p. 433-457</subfield>
    </datafield>
  </record>
</collection>