Search

A Mixture model for payments and payment numbers in claims reserving

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20180005428</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20180320110144.0</controlfield>
    <controlfield tag="008">180223e20180101bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20130010403</subfield>
      <subfield code="a">Gigante, Patrizia</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="2">
      <subfield code="a">A Mixture model for payments and payment numbers in claims reserving</subfield>
      <subfield code="c">Patrizia Gigante, Liviana Picech, Luciano Sigalotti</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We consider a Tweedie's compound Poisson regression model with fixed and random effects, to describe the payment numbers and the incremental payments, jointly, in claims reserving. The parameter estimates are obtained within the framework of hierarchical generalized linear models, by applying the hlikelihood approach. Regression structures are allowed for the means and also for the dispersions. Predictions and prediction errors of the claims reserves are evaluated. Through the parameters of the distributions of the random effects, some external information (e.g. a development pattern of industry wide-data) can be incorporated into the model. A numerical example shows the impact of external data on the reserve and prediction error evaluations.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080597665</subfield>
      <subfield code="a">Métodos estadísticos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20180003073</subfield>
      <subfield code="a">Picech, Liviana</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20180003080</subfield>
      <subfield code="a">Sigalotti, Luciano</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/01/2018 Volumen 48 Número 1 - enero 2018 , p. 25-53</subfield>
    </datafield>
  </record>
</collection>