Search

Stochastic differential games between two insurers with generalized mean-variance premium principle

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20180005770</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20180320114713.0</controlfield>
    <controlfield tag="008">180226e20180101bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20180002014</subfield>
      <subfield code="a">Chen, Shumin</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Stochastic differential games between two insurers with generalized mean-variance premium principle</subfield>
      <subfield code="c">Shumin Chen, Hailiang Yang, Yan Zeng</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We study a stochastic differential game problem between two insurers, who invest in a financial market and adopt reinsurance to manage their claim risks. Supposing that their reinsurance premium rates are calculated according to the generalized mean-variance principle, we consider the competition between the two insurers as a non-zero sum stochastic differential game. Using dynamic programming technique, we derive a system of coupled Hamilton JacobiBellman equations and show the existence of equilibrium strategies. For an exponential utility maximizing game and a probability maximizing game, we obtain semiexplicit solutions for the equilibrium strategies and the equilibrium value functions, respectively. Finally,we provide some detailed comparative-static analyses on the equilibrium strategies and illustrate some economic insights.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586447</subfield>
      <subfield code="a">Modelo estocástico</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592042</subfield>
      <subfield code="a">Modelos matemáticos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080603120</subfield>
      <subfield code="a">Procesos estocásticos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080552367</subfield>
      <subfield code="a">Reaseguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080653507</subfield>
      <subfield code="a">Yang, Hailiang</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20130010458</subfield>
      <subfield code="a">Zeng, Yan</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/01/2018 Volumen 48 Número 1 - enero 2018 , p. 413-434</subfield>
    </datafield>
  </record>
</collection>