Search

What if variable annuity policyholders with guaranteed lifelong withdrawal benefit were rational?

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>What if variable annuity policyholders with guaranteed lifelong withdrawal benefit were rational?</title>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20180005183">
<namePart>Rüede, Philipp</namePart>
<nameIdentifier>MAPA20180005183</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2018</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">This article examines the lapse risk inherent to the guaranteed lifelong with-drawal benefit option embedded in a variable annuity product valuated from a pure derivatives perspective, that is, as a Bermudian option given to the policyholder. We assume rational behavior and quantify the potential impact of the lapse risk, defined as the difference between no lapse and optimal lapsing. We develop a sensitivity analysis that shows how the value of the product varies with the key parameters, and calculate the fair fee using Monte Carlo simulations. Empirical analyses are performed and numerical results are provided</abstract>
<note type="statement of responsibility">Gabrieffa Piscopo, Philipp Rüede</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080608606">
<topic>Simulación Monte Carlo</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080578879">
<topic>Análisis empírico</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080586294">
<topic>Mercado de seguros</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080590567">
<topic>Empresas de seguros</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080592011">
<topic>Modelos actuariales</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080579258">
<topic>Cálculo actuarial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>The Journal of risk and insurance</title>
</titleInfo>
<originInfo>
<publisher>Nueva York : The American Risk and Insurance Association, 1964-</publisher>
</originInfo>
<identifier type="issn">0022-4367</identifier>
<identifier type="local">MAP20077000727</identifier>
<part>
<text>01/03/2018 Volumen 85 Número 1 - marzo 2018 , p. 203-217</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">180403</recordCreationDate>
<recordChangeDate encoding="iso8601">20180425162233.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20180010040</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>