Search

Claims reserving with a stochastic vector projection

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Claims reserving with a stochastic vector projection</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080112387">
<namePart>Portugal, Luis</namePart>
<nameIdentifier>MAPA20080112387</nameIdentifier>
</name>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20150002808">
<namePart>Pantelous, Athanasios A.</namePart>
<nameIdentifier>MAPA20150002808</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">usa</placeTerm>
</place>
<dateIssued encoding="marc">2018</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">In the last three decades, a variety of stochastic reserving models have been proposed in the general insurance literature mainly using (or reproducing) the well-known Chain-Ladder claims-reserving estimates. In practice, when the data do not satisfy the Chain-Ladder assumptions, high prediction errors might occur. Thus, in this article, a combined methodology is proposed based on the stochastic vector projection method and uses the regression through the origin approach of Murphy, but with heteroscedastic errors instead, and different from those that used by Mack. Furthermore, the Mack distribution-free model appears to have higher prediction errors when compared with the proposed one, particularly, for data sets with increasing (regular) trends. Finally, three empirical examples with irregular and regular data sets illustrate the theoretical findings, and the concepts of best estimate and risk margin are reported.</abstract>
<note type="statement of responsibility">Luís Portugal, Athanasios A. Pantelous, Hirbod Assa</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080586447">
<topic>Modelo estocástico</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080592059">
<topic>Modelos predictivos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080597733">
<topic>Modelos estadísticos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080592042">
<topic>Modelos matemáticos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20120011137">
<topic>Predicciones estadísticas</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080582340">
<topic>Reservas técnicas</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>North American actuarial journal</title>
</titleInfo>
<originInfo>
<publisher>Schaumburg : Society of Actuaries, 1997-</publisher>
</originInfo>
<identifier type="issn">1092-0277</identifier>
<identifier type="local">MAP20077000239</identifier>
<part>
<text>05/03/2018 Tomo 22 Número 1 - 2018 , p. 22-39</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">180606</recordCreationDate>
<recordChangeDate encoding="iso8601">20180615131306.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20180016998</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>