Search

A Hidden markov approach to disability insurance

Recurso electrónico / electronic resource
MARC record
Tag12Value
LDR  00000cab a2200000 4500
001  MAP20180017032
003  MAP
005  20180615131304.0
008  180606e20180301usa|||p |0|||b|eng d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
100  ‎$0‎MAPA20150002778‎$a‎Djehiche, Boualem
24512‎$a‎A Hidden markov approach to disability insurance‎$c‎Boualem Djehiche, Björn Löfdahl
520  ‎$a‎Point and interval estimation of future disability inception and recovery rates is predominantly carried out by combining generalized linear models with time series forecasting techniques into a two-step method involving parameter estimation from historical data and subsequent calibration of a time series model. This approach may lead to both conceptual and numerical problems since any time trend components of the model are incoherently treated as both model parameters and realizations of a stochastic process. We suggest that this general two-step approach can be improved in the following way: First, we assume a stochastic process form for the time trend component. The corresponding transition densities are then incorporated into the likelihood, and the model parameters are estimated using the Expectation-Maximization algorithm. We illustrate the modeling procedure by fitting the model to Swedish disability claims data
650 4‎$0‎MAPA20080576783‎$a‎Modelo de Markov
650 4‎$0‎MAPA20080562144‎$a‎Discapacidad
650 4‎$0‎MAPA20080603793‎$a‎Seguro de incapacidad
650 4‎$0‎MAPA20080603120‎$a‎Procesos estocásticos
650 4‎$0‎MAPA20080602437‎$a‎Matemática del seguro
650 4‎$0‎MAPA20080597733‎$a‎Modelos estadísticos
651 1‎$0‎MAPA20080637811‎$a‎Suecia
7001 ‎$0‎MAPA20150005106‎$a‎Löfdahl, Björn
7730 ‎$w‎MAP20077000239‎$t‎North American actuarial journal‎$d‎Schaumburg : Society of Actuaries, 1997-‎$x‎1092-0277‎$g‎05/03/2018 Tomo 22 Número 1 - 2018 , p. 119-136