Search

A Hidden markov approach to disability insurance

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20180017032</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20180615131304.0</controlfield>
    <controlfield tag="008">180606e20180301usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20150002778</subfield>
      <subfield code="a">Djehiche, Boualem</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="2">
      <subfield code="a">A Hidden markov approach to disability insurance</subfield>
      <subfield code="c">Boualem Djehiche, Björn Löfdahl</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Point and interval estimation of future disability inception and recovery rates is predominantly carried out by combining generalized linear models with time series forecasting techniques into a two-step method involving parameter estimation from historical data and subsequent calibration of a time series model. This approach may lead to both conceptual and numerical problems since any time trend components of the model are incoherently treated as both model parameters and realizations of a stochastic process. We suggest that this general two-step approach can be improved in the following way: First, we assume a stochastic process form for the time trend component. The corresponding transition densities are then incorporated into the likelihood, and the model parameters are estimated using the Expectation-Maximization algorithm. We illustrate the modeling procedure by fitting the model to Swedish disability claims data</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080576783</subfield>
      <subfield code="a">Modelo de Markov</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080562144</subfield>
      <subfield code="a">Discapacidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080603793</subfield>
      <subfield code="a">Seguro de incapacidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080603120</subfield>
      <subfield code="a">Procesos estocásticos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080597733</subfield>
      <subfield code="a">Modelos estadísticos</subfield>
    </datafield>
    <datafield tag="651" ind1=" " ind2="1">
      <subfield code="0">MAPA20080637811</subfield>
      <subfield code="a">Suecia</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20150005106</subfield>
      <subfield code="a">Löfdahl, Björn</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">05/03/2018 Tomo 22 Número 1 - 2018 , p. 119-136</subfield>
    </datafield>
  </record>
</collection>