On integrated chance constraints in alm for pension funds
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20180022531</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20180717154925.0</controlfield>
<controlfield tag="008">180712e20180501bel|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20180010477</subfield>
<subfield code="a">Toukourou, Youssouf A. F.</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">On integrated chance constraints in alm for pension funds</subfield>
<subfield code="c">Youssouf A. F. Toukourou, François Dufresne</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">We discuss the role of integrated chance constraints (ICC) as quantitative risk constraints in asset and liability management (ALM) for pension funds. We define two types of ICC: the one period integrated chance constraint (OICC) and the multiperiod integrated chance constraint (MICC). As their names suggest, the OICC covers only one period, whereas several periods are taken into account with the MICC. A multistage stochastic linear programming model is therefore developed for this purpose and a special mention is paid to the modeling of the MICC. Based on a numerical example, we first analyze the effects of the OICC and the MICC on the optimal decisions (asset allocation and contribution rate) of a pension fund. By definition, the MICC is more restrictive and safer compared to the OICC. Second, we quantify this MICC safety increase. The results show that although the optimal decisions from the OICC and the MICC differ, the total costs are very close, showing that the MICC is definitely a better approach since it is more prudent</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080591021</subfield>
<subfield code="a">Fondos de pensiones</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080585518</subfield>
<subfield code="a">Gestión de activos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592837</subfield>
<subfield code="a">Programación lineal</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586447</subfield>
<subfield code="a">Modelo estocástico</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20180010576</subfield>
<subfield code="a">Dufresne, François</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="g">01/05/2018 Volumen 48 Número 2 - mayo 2018 , p. 571-609</subfield>
</datafield>
</record>
</collection>