Search

On the evaluation of multivariate compound distributions with continuous severity distributions and sarmanov's counting distribution

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20180022623</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20180717154922.0</controlfield>
    <controlfield tag="008">180712e20180501bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20180010507</subfield>
      <subfield code="a">Tamraz, Maissa</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">On the evaluation of multivariate compound distributions with continuous severity distributions and sarmanov's counting distribution</subfield>
      <subfield code="c">Maissa Tamraz, Raluca Vernic</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, we present closed-type formulas for some multivariate compound distributions with multivariate Sarmanov counting distribution and independent Erlang distributed claim sizes. Further on, we also consider a type-II Pareto dependency between the claim sizes of a certain type. The resulting densities rely on the special hypergeometric function, which has the advantage of being implemented in the usual software. We numerically illustrate the applicability and efficiency of such formulas by evaluating a bivariate cumulative distribution function, which is also compared with the similar function obtained by the classical recursion-discretization approach</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586348</subfield>
      <subfield code="a">Métodos de cálculo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591953</subfield>
      <subfield code="a">Métodos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586447</subfield>
      <subfield code="a">Modelo estocástico</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20180010651</subfield>
      <subfield code="a">Vernic, Raluca</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/05/2018 Volumen 48 Número 2 - mayo 2018 , p. 841-870</subfield>
    </datafield>
  </record>
</collection>