Pricing critical illness insurance from prevalence rates : Gompertz versus Weibull
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20180025754</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20180830121814.0</controlfield>
<controlfield tag="008">180808e20180601usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20180012044</subfield>
<subfield code="a">Baione, Fabio</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Pricing critical illness insurance from prevalence rates</subfield>
<subfield code="b"> : Gompertz versus Weibull</subfield>
<subfield code="c">Fabio Baione, Susanna Levantesi</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The pricing of critical illness insurance requires specific and detailed insurance data on healthy and ill lives. However, where the critical illness insurance market is small or national commercial insurance data needed for premium estimates are unavailable, national health statistics can be a viable starting point for insurance ratemaking purposes, even if such statistics cover the general population, are aggregate, and are reported at irregular intervals. To develop a critical illness insurance pricing model structured on a multiple state continuous and time-inhomogeneous Markov chain and based on national statistics, we do three things: First, assuming that the mortality intensity of healthy and ill lives is modeled by two parametrically different Weibull hazard functions, we provide closed formulas for transition probabilities involved in the multiple state model we propose. Second, we use a dataset that allows us to assess the accuracy of our multiple state model as a good estimator of incidence rates under the Weibull assumption applied to mortality rates. Third, the Weibull results are compared to corresponding results obtained by substituting two parametrically different Gompertz models for the Weibull models of mortality rates, as proposed previously. This enables us to assess which of the two parametric models is the superior tool for accurately calculating the multiple state model transition probabilities and assessing the comparative efficiency of Weibull and Gompertz as methods for pricing critical illness insurance</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080610333</subfield>
<subfield code="a">Distribución de Weibull</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20180012297</subfield>
<subfield code="a">Modelo de Gompertz</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592042</subfield>
<subfield code="a">Modelos matemáticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080624941</subfield>
<subfield code="a">Seguro de enfermedades graves</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586294</subfield>
<subfield code="a">Mercado de seguros</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080576783</subfield>
<subfield code="a">Modelo de Markov</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586447</subfield>
<subfield code="a">Modelo estocástico</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592011</subfield>
<subfield code="a">Modelos actuariales</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">MAPA20120013445</subfield>
<subfield code="a">Levantesi, Susanna</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">04/06/2018 Tomo 22 Número 2 - 2018 , p. 270-288</subfield>
</datafield>
</record>
</collection>