Search

Dynamic frailty count process in insurance : a unified framework for estimation, pricing and forecasting

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20190000680</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20190111142724.0</controlfield>
    <controlfield tag="008">190108e20181203esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20170007913</subfield>
      <subfield code="a">Lu, Yang</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Dynamic frailty count process in insurance</subfield>
      <subfield code="b">: a unified framework for estimation, pricing and forecasting</subfield>
      <subfield code="c">Yang Lu</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We study count processes in insurance, in which the underlying risk factor is time varying and unobservable. The factor follows an autoregressive gamma process, and the resulting model generalizes the static Poisson-Gamma model and allows for closed form expression for the posterior Bayes (linear or nonlinear) premium. Moreover, the estimation and forecasting can be conducted within the same framework in a rather efficient way. An example of automobile insurance pricing illustrates the ability of the model to capture the duration dependent, nonlinear impact of past claims on future ones and the improvement of the Bayes pricing method compared to the linear credibility approach</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592059</subfield>
      <subfield code="a">Modelos predictivos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080618827</subfield>
      <subfield code="a">Administración de empresas</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080590567</subfield>
      <subfield code="a">Empresas de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080657963</subfield>
      <subfield code="a">Procesos de medición</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="g">03/12/2018 Volumen 85 Número 4 - diciembre 2018 , p. 1083-1102</subfield>
    </datafield>
  </record>
</collection>