Search

Regression tree credibility model

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20190021104</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20190715150856.0</controlfield>
    <controlfield tag="008">190708e20190603usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20190009508</subfield>
      <subfield code="a">Diao, Liqun</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Regression tree credibility model</subfield>
      <subfield code="c">Liqun Diao, Chengguo Weng</subfield>
    </datafield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">29 p.</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This article applies machine learning techniques to credibility theory and proposes a regression-tree-based algorithm to integrate covariate information into credibility premium prediction. The recursive binary algorithm partitions a collective of individual risks into mutually exclusive subcollectives and applies the classical Bühlmann-Straub credibility formula for the prediction of individual net premiums. The algorithm provides a flexible way to integrate covariate information into individual net premiums prediction. It is appealing for capturing nonlinear and/or interaction covariate effects. It automatically selects influential covariate variables for premium prediction and requires no additional ex ante variable selection procedure. The superiority in prediction accuracy of the proposed algorithm is demonstrated by extensive simulation studies. The proposed method is applied to the U.S. Medicare data for illustration purposes.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080618575</subfield>
      <subfield code="a">Teoría de la credibilidad</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080119546</subfield>
      <subfield code="a">Weng, Chengguo</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">03/06/2019 Tomo 23 Número 2 - 2019 , p. 169-196</subfield>
    </datafield>
  </record>
</collection>