Search

Improving agricultural microinsurance by applying universal kriging and generalised additive models for interpolation of mean daily temperature

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20190024457</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20190911095636.0</controlfield>
    <controlfield tag="008">190826e20190701che|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">329</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Improving agricultural microinsurance by applying universal kriging and generalised additive models for interpolation of mean daily temperature</subfield>
      <subfield code="c">Mitchell Roznik... [et al.]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Agricultural microinsurance has the potential to protect farmers against crop loss caused by extreme adverse weather conditions. Microinsurance policies for smallholder farmers are often designed on the basis of weather indices, whereby weather insurance variables are measured at ground weather stations and then interpolated to the location of the farm. However, a low density of weather stations causes interpolation error, which contributes to basis risk. The objective of this paper is to investigate whether agricultural microinsurance can be improved by reducing interpolation error through advanced interpolation methods, including universal kriging (UK) and generalised additive models (GAM) used with land surface temperature, elevation, and other covariates. Results indicate that for areas with a lower density of weather stations, UK with elevation substantially improves air temperature interpolation accuracy. The approach developed in this paper may help to improve interpolation and could therefore reduce basis risk for agricultural microinsurance in regions with a low density of weather stations, such as in developing countries.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080563394</subfield>
      <subfield code="a">Microseguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080578213</subfield>
      <subfield code="a">Seguros agrarios</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080629755</subfield>
      <subfield code="a">Seguro de riesgos extraordinarios</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080581602</subfield>
      <subfield code="a">Países emergentes</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20190012553</subfield>
      <subfield code="a">Roznik, Mitchell</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100215</subfield>
      <subfield code="t">Geneva papers on risk and insurance : issues and practice</subfield>
      <subfield code="d">Geneva : The Geneva Association, 1976-</subfield>
      <subfield code="x">1018-5895</subfield>
      <subfield code="g">01/07/2019 Volumen 44 Número 3 - julio 2019 , p. 446-480</subfield>
    </datafield>
  </record>
</collection>