Dynamic principal component regression : application to age-specific mortality forecasting
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20190032063</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20191106165242.0</controlfield>
<controlfield tag="008">191106e20190902usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20190015141</subfield>
<subfield code="a">Lin Shang, Han</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Dynamic principal component regression</subfield>
<subfield code="b">: application to age-specific mortality forecasting</subfield>
<subfield code="c">Han Lin Shang</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In areas of application, including actuarial science and demography, it is increasingly common to consider a time series of curves; an example of this is age-specific mortality rates observed over a period of years. Given that age can be treated as a discrete or continuous variable, a dimension reduction technique, such as principal component analysis (PCA), is often implemented. However, in the presence of moderate-to-strong temporal dependence, static PCA commonly used for analyzing independent and identically distributed data may not be adequate. As an alternative, we consider a dynamic principal component approach to model temporal dependence in a time series of curves. Inspired by Brillinger's (1974, Time Series: Data Analysis and Theory. New York: Holt, Rinehart and Winston) theory of dynamic principal components, we introduce a dynamic PCA, which is based on eigen decomposition of estimated long-run covariance. Through a series of empirical applications, we demonstrate the potential improvement of 1-year-ahead point and interval forecast accuracies that the dynamic principal component regression entails when compared with the static counterpart.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555306</subfield>
<subfield code="a">Mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080599300</subfield>
<subfield code="a">Tablas de mortalidad</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="g">02/09/2019 Volumen 49 Número 3 - septiembre 2019 , p.619-645</subfield>
</datafield>
</record>
</collection>