Search

The Reserve uncertainties in the chain ladder model of mack revisited

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20190032131</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20191106164205.0</controlfield>
    <controlfield tag="008">191106e20190902esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20110013370</subfield>
      <subfield code="a">Gisler, Alois</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="4">
      <subfield code="a">The Reserve uncertainties in the chain ladder model of mack revisited</subfield>
      <subfield code="c">Alois Gisler</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We revisit the full picture of the claims development uncertainty in Mack's (1993) distribution-free stochastic chain ladder model. We derive the uncertainty estimators in a new and easily understandable way, which is much simpler than the derivation found so far in the literature, and compare them with the well known estimators of Mack and of MerzWüthrich. Our uncertainty estimators of the one-year run-off risks are new and different to the MerzWüthrich formulas. But if we approximate our estimators by a first order Taylor expansion, we obtain equivalent but simpler formulas. As regards the ultimate run-off risk, we obtain the same formulas as Mack for single accident years and an equivalent but better interpretable formula for the total over all accident years.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20100065242</subfield>
      <subfield code="a">Teorema de Bayes</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20120011137</subfield>
      <subfield code="a">Predicciones estadísticas</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">02/09/2019 Volumen 49 Número 3 - septiembre 2019 , p. 787-821</subfield>
    </datafield>
  </record>
</collection>