Search

Compatibility and attainability of matrices of correlation-based measures of concordance

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Compatibility and attainability of matrices of correlation-based measures of concordance</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20190015196">
<namePart>Hofert, Marius</namePart>
<nameIdentifier>MAPA20190015196</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2019</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Measures of concordance have been widely used in insurance and risk management to summarize nonlinear dependence among risks modeled by random variables, which Pearson's correlation coefficient cannot capture. However, popular measures of concordance, such as Spearman's rho and Blomqvist's beta, appear as classical correlations of transformed random variables. We characterize a whole class of such concordance measures arising from correlations of transformed random variables, which includes Spearman's rho, Blomqvist's beta and van der Waerden's coefficient as special cases. Compatibility and attainability of square matrices with entries given by such measures are studiedthat is, whether a given square matrix of such measures of concordance can be realized for some random vector and how such a random vector can be constructed. Compatibility and attainability of block matrices and hierarchical matrices are also studied due to their practical importance in insurance and risk management. In particular, a subclass of attainable block Spearman's rho matrices is proposed to compensate for the drawback that Spearman's rho matrices are in general not attainable for dimensions larger than three. Another result concerns a novel analytical form of the Cholesky factor of block matrices which allows one, for example, to construct random vectors with given block matrices of van der Waerden's coefficient.

</abstract>
<note type="statement of responsibility">Marius Hofert, Takaaki Koike </note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20090035034">
<topic>Modelización mediante cópulas</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080588298">
<topic>Teoría de matrices</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080579258">
<topic>Cálculo actuarial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>Astin bulletin</title>
</titleInfo>
<originInfo>
<publisher>Belgium : ASTIN and AFIR Sections of the International Actuarial Association</publisher>
</originInfo>
<identifier type="issn">0515-0361</identifier>
<identifier type="local">MAP20077000420</identifier>
<part>
<text>02/09/2019 Volumen 49 Número 3 - septiembre 2019 , p. 885-918</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">191106</recordCreationDate>
<recordChangeDate encoding="iso8601">20191106164120.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20190032162</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>