Search

Minimum death rates and maximum life expectancy : the role of concordant ages

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20190035330</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20200102153153.0</controlfield>
    <controlfield tag="008">191227e20190902usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20160014174</subfield>
      <subfield code="a">Canudas-Romo, Vladimir</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Minimum death rates and maximum life expectancy</subfield>
      <subfield code="b">: the role of concordant ages</subfield>
      <subfield code="c">Vladimir Canudas-Romo, Heather Booth, Marie-Pier Bergeron-Boucher</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">The aim of this article is to understand how maximum life expectancy is achieved in the context of mortality transition. It explores this aim using the concepts of potential life expectancy, based on minimum rates at each age among all high longevity populations, and concordant ages. Concordant ages are defined as ages at which the minimum death rate occurs in the population with the maximum life expectancy. The results show the extent to which maximum life expectancy could increase through the realization of demonstrably achievable minimum rates. </subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080555016</subfield>
      <subfield code="a">Longevidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080580377</subfield>
      <subfield code="a">Esperanza de vida</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080555306</subfield>
      <subfield code="a">Mortalidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20190016803</subfield>
      <subfield code="a">Booth, Heather</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20180008085</subfield>
      <subfield code="a">Bergeron-Boucher, Marie-Pier</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">02/09/2019 Tomo 23 Número 3 - 2019 , p. 322-334</subfield>
    </datafield>
  </record>
</collection>