Search

Actuarial applications of word embedding models

Recurso electrónico / Electronic resource
MARC record
Tag12Value
LDR  00000cab a2200000 4500
001  MAP20200009894
003  MAP
005  20200326142042.0
008  200326e20200101bel|||p |0|||b|eng d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
100  ‎$0‎MAPA20200006541‎$a‎Lee, Gee Y
24510‎$a‎Actuarial applications of word embedding models‎$c‎Gee Y Lee, Scott Manski, Tapabrata Maiti
520  ‎$a‎In insurance analytics, textual descriptions of claims are often discarded, because traditional empirical analyses require numeric descriptor variables. This paper demonstrates how textual data can be easily used in insurance analytics. Using the concept of word similarities, we illustrate how to extract variables from text and incorporate them into claims analyses using standard generalized linear model or generalized additive regression model. This procedure is applied to the Wisconsin Local Government Property Insurance Fund (LGPIF) data, in order to demonstrate how insurance claims management and risk mitigation procedures can be improved. We illustrate two applications. First, we show how the claims classification problem can be solved using textual information. Second, we analyze the relationship between risk metrics and the probability of large losses. We obtain good results for both applications, where short textual descriptions of insurance claims are used for the extraction of features.
650 4‎$0‎MAPA20080579258‎$a‎Cálculo actuarial
650 4‎$0‎MAPA20080578879‎$a‎Análisis empírico
650 4‎$0‎MAPA20080592011‎$a‎Modelos actuariales
650 4‎$0‎MAPA20080567118‎$a‎Reclamaciones
7001 ‎$0‎MAPA20200006602‎$a‎Manski, Scott
7001 ‎$0‎MAPA20200006619‎$a‎Maiti, Tapabrata
7730 ‎$w‎MAP20077000420‎$t‎Astin bulletin‎$d‎Belgium : ASTIN and AFIR Sections of the International Actuarial Association‎$x‎0515-0361‎$g‎01/01/2020 Volumen 50 Número 1 - enero 2020 , p. 1-24