Valuation of large variable annuity portfolios with rank order kriging
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20200011606</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20200413180501.0</controlfield>
<controlfield tag="008">200408e20200302usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20140000234</subfield>
<subfield code="a">Gan, Guojun</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Valuation of large variable annuity portfolios with rank order kriging</subfield>
<subfield code="c">Guojun Gan, Emiliano A. Valdez</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Metamodels, which simplify the simulation models used in the valuation of large variable annuity portfolios, have recently increased in popularity. The ordinary kriging and the GB2 (generalized beta of the second kind) regression models are examples of metamodels used to predict fair market values of variable annuity guarantees. It is well known that the distribution of fair market values is highly skewed. Ordinary kriging does not fit skewed data well but depends on only a few parameters that can be estimated straightforwardly. GB2 regression can handle skewed data but parameter estimation can be quite challenging. In this article, we explore the rank order kriging method, which can handle highly skewed data and depends only on a single parameter, for the valuation of large variable annuity portfolios. Our numerical results demonstrate that the rank order kriging method performs remarkably well in terms of fitting the skewed distribution and producing accurate estimates of fair market values at the portfolio level.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602642</subfield>
<subfield code="a">Modelos de simulación</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592042</subfield>
<subfield code="a">Modelos matemáticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20150006585</subfield>
<subfield code="a">Valor de mercado</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20080648428</subfield>
<subfield code="a">Valdez, Emiliano A.</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">02/03/2020 Tomo 24 Número 1 - 2020 , p. 100-117</subfield>
</datafield>
</record>
</collection>