Search

Text mining methods applied to insurance company customer calls : a case study

Recurso electrónico / Electronic resource
MARC record
Tag12Value
LDR  00000cab a2200000 4500
001  MAP20200011637
003  MAP
005  20200413180242.0
008  200408e20200302usa|||p |0|||b|eng d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎217
24510‎$a‎Text mining methods applied to insurance company customer calls‎$b‎: a case study‎$c‎Xiyue Liao...[El al.]
520  ‎$a‎The purpose of this case study is to develop a process for a U.S. personal lines insurance company to improve its customer service, make call center operations more efficient, and reduce costs by analyzing customer calls. Text mining methods such as topic modeling and sentiment analysis are used to study approximately 10,000 nonclaim customer calls from 2016. Results show the most frequent topics of calls and how customer sentiment differs between topics, which will allow the company to adjust its customer service accordingly.
650 4‎$0‎MAPA20080590567‎$a‎Empresas de seguros
650 4‎$0‎MAPA20080589189‎$a‎Atención al cliente
650 4‎$0‎MAPA20090013650‎$a‎Opinión del cliente
650 4‎$0‎MAPA20080553241‎$a‎Asegurados
650 4‎$0‎MAPA20080571566‎$a‎Casos prácticos
651 1‎$0‎MAPA20080638337‎$a‎Estados Unidos
7001 ‎$0‎MAPA20200007654‎$a‎Liao, Xiyue
7001 ‎$0‎MAPA20200007647‎$a‎Chen, Guoqiang
7001 ‎$0‎MAPA20200007661‎$a‎Ku, Ben
7001 ‎$0‎MAPA20200007678‎$a‎Narula, Rahul
7001 ‎$0‎MAPA20200007685‎$a‎Duncan, Janet
7730 ‎$w‎MAP20077000239‎$t‎North American actuarial journal‎$d‎Schaumburg : Society of Actuaries, 1997-‎$x‎1092-0277‎$g‎02/03/2020 Tomo 24 Número 1 - 2020 , p. 153-163