Search

Stochastic comparisons between the extreme claim amounts from two heterogeneous portfolios in the case of transmuted-G model

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Stochastic comparisons between the extreme claim amounts from two heterogeneous portfolios in the case of transmuted-G model</title>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20200020189">
<namePart>Torabi, Hamzeh</namePart>
<nameIdentifier>MAPA20200020189</nameIdentifier>
</name>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20200020196">
<namePart>Dolati, Ali </namePart>
<nameIdentifier>MAPA20200020196</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">usa</placeTerm>
</place>
<dateIssued encoding="marc">2020</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Annual premium is the amount paid by the policyholder as the cost of the insurance cover being purchased. Indeed, it is the primary cost to the policyholder for assigning the risk to the insurer and depends on the type of insurance. Determination of the annual premium is an important problem in insurance analysis. For this purpose, the smallest and the largest claim amounts provide useful information. An attractive problem for the actuaries is expressing preferences between random future gains or losses, (Barmalzan, Najafabadi, and Balakrishnan 2017). For this purpose, stochastic orderings are very helpful. Stochastic orderings have been extensively used in areas such as management science, financial economics, insurance, actuarial science, operation research, reliability theory, queuing theory, and survival analysis. For more details on stochastic orderings we refer to Müller and Stoyan (2002), Shaked and Shanthikumar (2007), and Li and Li (2013). The transmuted-G (TG) model, which was introduced by Mirhossaini and Dolati (2008) and Shaw and Buckley (2009), is an attractive model for constructing new flexible distributions. </abstract>
<note type="statement of responsibility">Hossein Nadeb, Hamzeh Torabi, Ali Dolati</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080586447">
<topic>Modelo estocástico</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080579258">
<topic>Cálculo actuarial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080581886">
<topic>Primas de seguros</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080553630">
<topic>Coberturas</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080567118">
<topic>Reclamaciones</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>North American actuarial journal</title>
</titleInfo>
<originInfo>
<publisher>Schaumburg : Society of Actuaries, 1997-</publisher>
</originInfo>
<identifier type="issn">1092-0277</identifier>
<identifier type="local">MAP20077000239</identifier>
<part>
<text>01/09/2020 Tomo 24 Número 3 - 2020 , p. 475-487</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">201006</recordCreationDate>
<recordChangeDate encoding="iso8601">20201006140949.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20200031574</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>