Analysis of the impact of cyber events for cyber insurance
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20200032830</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20201020131143.0</controlfield>
<controlfield tag="008">201015e20201001che|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">328.3</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20200020691</subfield>
<subfield code="a">Palsson, Kjartan</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Analysis of the impact of cyber events for cyber insurance</subfield>
<subfield code="c">Kjartan Palsson, Steinn Gudmundsson, Sachin Shetty</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The mass adoption of cyber insurance will be predicated on the ability to conduct quantitative cyber risk assessment. This capability is crucial for not only providing insight into the cost of targeted threats but also providing incentives for insured enterprises to invest in protection aimed at preventing exploitation of targeted threats. Research indicates that asymmetric information, correlated loss and interdependent security issues make this difficult if insurers cannot monitor the cybersecurity efforts of the insured enterprises. In this paper, we present an analysis of cyber impacts based on cyber incidents reported in the Advisen cyber loss data feed. We show: (i) how exposure to cyber incidents varies between corporate sectors; (ii) how the type of incident relates to the number of entities and individuals affected by it; (iii) how the type of incident relates to the eventual financial cost; (iv) what type of information is most frequently compromised; (v) a breakdown of the main actors behind cyber incidents; and (vi) howtree-based classifiers can be used to gain insight into cyber risk indicators affectingthe cost of incidents.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20170003779</subfield>
<subfield code="a">Seguro de ciberriesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20160007633</subfield>
<subfield code="a">Ciberriesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080590567</subfield>
<subfield code="a">Empresas de seguros</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20140022700</subfield>
<subfield code="a">Ciberseguridad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080591182</subfield>
<subfield code="a">Gerencia de riesgos</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20200020752</subfield>
<subfield code="a">Gudmundsson, Steinn</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20180007255</subfield>
<subfield code="a">Shetty, Sachin</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100215</subfield>
<subfield code="t">Geneva papers on risk and insurance : issues and practice</subfield>
<subfield code="d">Geneva : The Geneva Association, 1976-</subfield>
<subfield code="x">1018-5895</subfield>
<subfield code="g">01/10/2020 Volumen 45 Número 4 - octubre 2020 , p. 564-579</subfield>
</datafield>
</record>
</collection>