Longevity projections : incorporating sample and population information through the modelization of differences in common sample points
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<rdf:Description>
<dc:creator>Salazar Vesga, Natalia</dc:creator>
<dc:creator>Rodríguez-Pardo del Castillo, José Miguel</dc:creator>
<dc:creator>Simón del Potro, Jesús Ramón</dc:creator>
<dc:creator>Universidad Carlos III de Madrid</dc:creator>
<dc:date>2020</dc:date>
<dc:description xml:lang="es">Trabajo Fin de Master del Master en Ciencias Actuariales y Financieras de la Escuela de Postgrado de la Universidad Carlos III de Madrid. Tutores: José Miguel Rodríguez-Pardo del Castillo y Jesús Ramón Simón del Potro. Curso 2018-2020</dc:description>
<dc:description xml:lang="es">Sumario: Projecting and understanding longevity has always been a major concern for both de- mographers and insurance companies. Having reliable projections of the mortality pat- terns at a country level allows governments to structure their pension schemes and public healthcare policies, and at a sample level, assists companies with the pricing of their life- insurance products as well as with the calculation of their Solvency Capital Requirement (SCR). Understanding mortality at a company level is not an easy task, due to the lack of a large series of data, the most common mortality projection models can not be ap- plied. This is the reason why insurers make use of more pragmatic approaches, generally at the cost of imposing safety margins on their estimations and overestimating death probabilities, which results in a higher cost of solvency capital and lower profitability for the business at hand. This document aims to explore a way in which population mortality models can be adapted to forecast the behavior of the insured population introducing a correction in the forecast of the general population that stems from the modelization of the differences between the two aforementioned groups.</dc:description>
<dc:format xml:lang="en">application/pdf</dc:format>
<dc:identifier>https://documentacion.fundacionmapfre.org/documentacion/publico/es/bib/173433.do</dc:identifier>
<dc:language>spa</dc:language>
<dc:publisher>Universidad Carlos III de Madrid</dc:publisher>
<dc:rights xml:lang="es">InC - http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:subject xml:lang="es">Longevidad</dc:subject>
<dc:subject xml:lang="es">Proyecciones demográficas</dc:subject>
<dc:subject xml:lang="es">Seguro de vida</dc:subject>
<dc:subject xml:lang="es">Modelos actuariales</dc:subject>
<dc:subject xml:lang="es">Empresas de seguros</dc:subject>
<dc:subject xml:lang="es">Margen de solvencia</dc:subject>
<dc:subject xml:lang="es">Rentabilidad</dc:subject>
<dc:subject xml:lang="es">Modelos probabílisticos</dc:subject>
<dc:subject xml:lang="es">Ageingnomics. Economia senior</dc:subject>
<dc:type xml:lang="es">Books</dc:type>
<dc:title xml:lang="es">Longevity projections : incorporating sample and population information through the modelization of differences in common sample points</dc:title>
<dc:relation xml:lang="es">Trabajos Fin de Master</dc:relation>
</rdf:Description>
</rdf:RDF>