Search

Addressing imbalanced insurance data through zero-inflated Poisson regression with boosting

Recurso electrónico / Electronic resource
MARC record
Tag12Value
LDR  00000cab a2200000 4500
001  MAP20210005442
003  MAP
005  20220911190203.0
008  210218e20210101bel|||p |0|||b|eng d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
100  ‎$0‎MAPA20210003035‎$a‎Lee, Simon C.K.
24510‎$a‎Addressing imbalanced insurance data through zero-inflated Poisson regression with boosting‎$c‎Simon C.K. Lee
520  ‎$a‎A machine learning approach to zero-inflated Poisson (ZIP) regression is introduced to address common difficulty arising from imbalanced financial data. The suggested ZIP can be interpreted as an adaptive weight adjustment procedure that removes the need for post-modeling re-calibration and results in a substantial enhancement of predictive accuracy. Notwithstanding the increased complexity due to the expanded parameter set, we utilize a cyclic coordinate descent optimization to implement the ZIP regression, with adjustments made to address saddle points. We also study how various approaches alleviate the potential drawbacks of incomplete exposures in insurance applications. The procedure is tested on real-life data.We demonstrate a significant improvement in performance relative to other popular alternatives, which justifies our modeling techniques.
650 4‎$0‎MAPA20090041721‎$a‎Distribución Poisson-Beta
650 4‎$0‎MAPA20080592059‎$a‎Modelos predictivos
650 4‎$0‎MAPA20080602437‎$a‎Matemática del seguro
650 4‎$0‎MAPA20170005476‎$a‎Machine learning
7730 ‎$w‎MAP20077000420‎$t‎Astin bulletin‎$d‎Belgium : ASTIN and AFIR Sections of the International Actuarial Association‎$x‎0515-0361‎$g‎01/01/2021 Volumen 51 Número 1 - enero 2021 , p. 27-55