Contenido multimedia no disponible por derechos de autor o por acceso restringido. Contacte con la institución para más información.
MAP20210005466Li, Zhengxiao Generalizing the log-moyal distribution and regression models for heavy-tailed loss data / Zhengxiao Li , Jan Beirlant, Shengwang MengSumario: Catastrophic loss data are known to be heavy-tailed. Practitioners then need models that are able to capture both tail and modal parts of claim data. To this purpose, a new parametric family of loss distributions is proposed as a gamma mixture of the generalized log Moyal distribution from Bhati and Ravi (2018), termed the generalized log-Moyal gamma (GLMGA) distribution. While the GLMGA distribution is a special case of the GB2 distribution, we show that this simpler model is effective in regression modeling of large and modal loss data. Regression modeling and applications to risk measurement are illustrated using a detailed analysis of a Chinese earthquake loss data set, comparing with the results of competing models from the literature. To this end, we discuss the, probabilistic characteristics of the GLMGA and statistical estimation of the parameters through maximum likelihood. Further illustrations of the applicability of the new class of distributions are provided with the fire claim data set reported in Cummins et al. (1990) and a Norwegian fire losses data set discussed recently in Bhati and Ravi (2018)En: Astin bulletin. - Belgium : ASTIN and AFIR Sections of the International Actuarial Association = ISSN 0515-0361. - 01/01/2021 Volumen 51 Número 1 - enero 2021 , p. 57-991. Modelos actuariales. 2. Pérdidas por incendios. 3. Catástrofes naturales. 4. Reclamaciones. 5. Matemática del seguro. 6. Terremotos. I. Beirlant, Jan. II. Meng, Shengwang. III. Title.