Search

A Hybrid bees algorithm with grasshopper optimization algorithm for optimal deployment of wireless sensor networks

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<nonSort xml:space="preserve">A  </nonSort>
<title>Hybrid bees algorithm with grasshopper optimization algorithm for optimal deployment of wireless sensor networks</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20210005596">
<namePart>Deghbouch, Hicham</namePart>
<nameIdentifier>MAPA20210005596</nameIdentifier>
</name>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20210005602">
<namePart>Debbat, Fatima</namePart>
<nameIdentifier>MAPA20210005602</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2021</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
<internetMediaType>application/pdf</internetMediaType>
</physicalDescription>
<abstract displayLabel="Summary">This work addresses the deployment problem in Wireless Sensor Networks (WSNs) by hybridizing two metaheuristics, namely the Bees Algorithm (BA) and the Grasshopper Optimization Algorithm (GOA). The BA is an optimization algorithm that demonstrated promising results in solving many engineering problems. However, the local search process of BA lacks ecient exploitation due to the random assignment of search agents inside the neighborhoods, which weakens the algorithm's accuracy and results in slow convergence especially when solving higher dimension problems. To alleviate this shortcoming, this paper proposes a hybrid algorithm that utilizes the strength of the GOA to enhance the exploitation phase of the BA. To prove the eectiveness of the proposed algorithm, it is applied for WSNs deployment optimization with various deployment settings. Results demonstrate that the proposed hybrid algorithm can optimize the deployment of WSN and outperforms the state-of-the-art algorithms in terms of coverage, overlapping area, average moving distance, and energy consumption. </abstract>
<note type="statement of responsibility">Hicham Deghbouch, Fatima Debbat</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080553128">
<topic>Algoritmos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080611200">
<topic>Inteligencia artificial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20170006497">
<topic>Computación cognitiva</topic>
</subject>
<classification authority="">922.134</classification>
<relatedItem type="host">
<titleInfo>
<title>Revista Iberoamericana de Inteligencia Artificial</title>
</titleInfo>
<originInfo>
<publisher>IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</publisher>
</originInfo>
<identifier type="issn">1988-3064</identifier>
<identifier type="local">MAP20200034445</identifier>
<part>
<text>15/02/2021 Volumen 24 Número 67 - febrero 2021 , p. 18-35</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">210413</recordCreationDate>
<recordChangeDate encoding="iso8601">20220911190025.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20210011726</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>