Boosting Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20210024405</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220911185857.0</controlfield>
<controlfield tag="008">210726e2021 esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">213.2</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20210030116</subfield>
<subfield code="a">Henckaerts, Roel</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Boosting Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods</subfield>
<subfield code="c">Roel Henckaerts... [et.al]</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Pricing actuaries typically operate within the framework of generalized linear models (GLMs). With the upswing of data analytics, our study puts focus on machine learning methods to develop full tariff plans built from both the frequency and severity of claims. We adapt the loss functions used in the algorithms such that the specific characteristics of insurance data are carefully incorporated: highly unbalanced count data with excess zeros and varying exposure on the frequency side combined with scarce but potentially long-tailed data on the severity side. A key requirement is the need for transparent and interpretable pricing models that are easily explainable to all stakeholders. We therefore focus on machine learning with decision trees: Starting from simple regression trees, we work toward more advanced ensembles such as random forests and boosted trees. We show how to choose the optimal tuning parameters for these models in an elaborate cross-validation scheme. In addition, we present visualization tools to obtain insights from the resulting models, and the economic value of these new modeling approaches is evaluated. Boosted trees outperform the classical GLMs, allowing the insurer to form profitable portfolios and to guard against potential adverse risk selection.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080590567</subfield>
<subfield code="a">Empresas de seguros</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080545475</subfield>
<subfield code="a">Tarifas</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080604127</subfield>
<subfield code="a">Tarificación a priori</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20170005476</subfield>
<subfield code="a">Machine learning</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">MAPA20210030116</subfield>
<subfield code="a">Henckaerts, Roel</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">01/06/2021 Tomo 25 Número 2 - 2021 , p. 255-285</subfield>
</datafield>
</record>
</collection>